Immunax

The Science Behind Immunax

A natural immune enhancer with proven clinical benefits.

Immunax is Supported by 30+ Years of Scientific Research

Immunax’s key active ingredient is VDBP-MAF (Vitamin D Binding Protein Macrophage Activating Factor). The protein is also referred to in the scientific literature as GcMAF (Gc protein-derived macrophage activating factor).

It is a naturally-occurring messenger protein that has been the subject of scientific research for its potential application in various types of cancer and chronic diseases involving immune dysregulation.

Over 160 clinical studies have been conducted on VDBP-MAF since it was first discovered at the University of Pennsylvania by Prof. Yamamoto in 1993. The research papers on VDBP-MAF cover the following potential indications and more:

Scientifically-Validated Physiological Effects of Immunax

Over the decades, research on VDBP-MAF has determined numerous positive physiological actions. The effects documented in the literature indicate potential therapeutic benefits both for cancer and other pathologies:

A Supportive Therapy for Integrative Cancer Care

Research on VDBP-MAF has shown promising results, particularly in the modulation of the immune system with clinical benefits reported for cancer patients [3]. Studies have indicated that VDBP-MAF may help in preventing disease recurrence after standard of care cancer treatments [10]. VDBP-MAF has also been shown to have anti-angiogenic effects, inhibiting the formation of blood vessels in tumors [8] [9]. However, it is important to note that any claims of VDBP-MAF supplementation as a wonder molecule or standalone treatment for cancer are not substantiated by current scientific evidence.

An Immune Therapy with Diverse Potential Applications

Patient selection is crucial in VDBP-MAF therapy for cancer. Its effectiveness varies depending on the type and stage of cancer [3]. VDBP-MAF replacement therapy is known to be more effective in treating undifferentiated tumor cells than differentiated cells and is reportedly less effective for blood cancers (such as leukemia) [3]. Additionally, the treatment is generally indicated for non-anemic patients only.

VDBP-MAF has demonstrated potential efficacy for patients with various cancer types, for example prostate, breast, colon, liver, stomach, lung (including mesothelioma), kidney, bladder, uterus, ovarian, head/neck and brain cancers, fibrosarcomas and melanomas [3].

VDBP-MAF has also been explored for its potential application in many other chronic diseases such as neurological disorders, autoimmune conditions, and serious infections. Highly promising peer-reviewed research papers and case reports have been published.

Despite promising preclinical studies and patient reports, it is important to note that more extensive double-blind randomized clinical trials with larger sample sizes are still needed to fully establish therapeutic efficacy for all potential indications of VDBP-MAF.

A Safe and Natural Treatment with Clinical Benefits

Immunax holds great potential as a natural and supportive immunotherapy without side-effects. Early evidence supports its potential application in cancer treatment and many other immune-related disorders. Clinical data from physicians and researchers around the world has demonstrated that VDBP-MAF is extremely safe with considerable benefits for immune-compromised patients. No adverse events have been reported in over 30+ years of scientific literature.

Summary

Based on the available scientific research, Immunax shows promise for various health conditions involving immune dysregulation. It has numerous proven immune-modulating effects with potential therapeutic application in integrative cancer care and other chronic diseases. Further well-designed clinical trials with larger sample sizes are still needed to better establish all potential indications of VDBP-MAF.
While research has shown positive findings, Regenerative Medicine Co., Ltd. does not make any direct health claims regarding the therapeutic use of Immunax. We strictly advise consulting with a qualified healthcare professional for personalized advice and guidance regarding treatment protocols and therapeutic outcomes.

References

Below you will find a list of recommended further reading and important studies on VDBP-MAF, which have been referenced throughout the website. These studies represent only a fraction of the current research available.
  1. Saburi, E., Tavakol-Afshari, J., Biglari, S., & Mortazavi, Y. (2017). Is α-N-acetylgalactosaminidase the key to curing cancer? A mini-review and hypothesis. J BUON, 22(6), 1372-1377. https://pubmed.ncbi.nlm.nih.gov/29332325/
  2. Thyer, L., Ward, E., Smith, R., Branca, J. J., Morucci, G., Gulisano, M., … & Pacini, S. (2013). GC protein-derived macrophage-activating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients. Oncoimmunology, 2(8), e25769. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812199/
  3. Saburi, E., Saburi, A., & Ghanei, M. (2017). Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside. Caspian Journal of Internal Medicine, 8(4), 228. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686300/
  4. Albracht, S. P. (2022). Immunotherapy with GcMAF revisited-A critical overview of the research of Nobuto Yamamoto. Cancer Treatment and Research Communications, 100537. https://www.sciencedirect.com/science/article/pii/S2468294222000284/
  5. Morucci, G., Branca, J. J., Gulisano, M., Ruggiero, M., Paternostro, F., Pacini, A., … & Pacini, S. (2015). Gc-protein-derived macrophage activating factor counteracts the neuronal damage induced by oxaliplatin. Anti-Cancer Drugs, 26(2), 197-209. https://pubmed.ncbi.nlm.nih.gov/25304987/
  6. Gregory, K. J., Zhao, B., Bielenberg, D. R., Dridi, S., Wu, J., Jiang, W., Huang, B., Pirie-Shepherd, S., & Fannon, M. (2010). Vitamin D binding protein-macrophage activating factor directly inhibits proliferation, migration, and uPAR expression of prostate cancer cells. PloS one, 5(10), e13428. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956649/
  7. Mohammed, A. A., Al-Zahrani, A. S., Sherisher, M. A., Alnagar, A. A., El-Shentenawy, A., & El-Kashif, A. T. (2014). The pattern of infection and antibiotics use in terminal cancer patients. Journal of the Egyptian National Cancer Institute, 26(3), 147–152. https://pubmed.ncbi.nlm.nih.gov/25150130/
  8. Kanda, S., Mochizuki, Y., Miyata, Y., Kanetake, H., & Yamamoto, N. (2002). Effects of vitamin D3-binding protein-derived macrophage activating factor (GcMAF) on angiogenesis. Journal of the National Cancer Institute, 94(17), 1311-1319. https://academic.oup.com/jnci/article/94/17/1311/2519874
  9. Pacini, S., Morucci, G., Punzi, T., Gulisano, M., & Ruggiero, M. (2011). Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay. Cancer immunology, immunotherapy : CII, 60(4), 479–485. https://pubmed.ncbi.nlm.nih.gov/21170647/
  10. Yamamoto, N., Suyama, H., & Yamamoto, N. (2008). Immunotherapy for prostate cancer with Gc protein-derived macrophage-activating factor, GcMAF. Translational oncology, 1(2), 65-72. https://www.sciencedirect.com/science/article/pii/S1936523308800083
  11. Smith, R., Thyer, L., Ward, E., Meacci, E., Branca, J. J. V., Morucci, G., … & Pacini, S. (2013). Effects of GC-Macrophage activating factor in human neurons: implications for treatment of chronic fatigue syndrome. American Journal of Immunology, 9, 120-129. https://arpi.unipi.it/handle/11568/1053382
  12. Siniscalco, D., Bradstreet, J. J., Cirillo, A., & Antonucci, N. (2014). The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages. Journal of neuroinflammation, 11, 78. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996516/
  13. Eric Matamoros, M. (2017). GcMAF: a polemic or a highly promising molecule?. World Scientific News, 65, 20-36. https://bibliotekanauki.pl/articles/1182805
  14. Bradstreet, J. J., Vogelaar, E., & Thyer, L. (2012). Initial Observations of Elevated Alpha-N-Acetylgalactosaminidase Activity Associated with Autism and Observed Reductions from GC Protein–Macrophage Activating Factor Injections. Autism Insights, (4). https://vacciniinforma.it/wp-content/uploads/2015/07/initial-observations-of-elevated.pdf
  15. Inui, T., Katsuura, G., Kubo, K., Kuchiike, D., Chenery, L., Uto, Y., Nishikata, T., & Mette, M. (2016). Case Report: GcMAF Treatment in a Patient with Multiple Sclerosis. Anticancer research, 36(7), 3771–3774. https://pubmed.ncbi.nlm.nih.gov/27354653/
  16. Thyer, L., Ward, E., Smith, R. J., Branca, J. J. V., Morucci, G., Gulisano, M., … & Pacini, S. (2013). Therapeutic effects of highly purified de-glycosylated gcmaf in the immunotherapy of patients with chronic diseases. American Journal of Immunology, 9, 78-84. https://arpi.unipi.it/handle/11568/1053372
  17. Neniskyte, U., Vilalta, A., & Brown, G. C. (2014). Tumour necrosis factor alpha-induced neuronal loss is mediated by microglial phagocytosis. FEBS letters, 588(17), 2952–2956. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158418/
  18. Tobinick, E., Gross, H., Weinberger, A., & Cohen, H. (2006). TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed : Medscape general medicine, 8(2), 25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1785182/
  19. Branca, J. J., Morucci, G., Malentacchi, F., Gelmini, S., Ruggiero, M., & Pacini, S. (2015). Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia. Journal of neuroscience research, 93(9), 1364–1377. https://pubmed.ncbi.nlm.nih.gov/25782915/
  20. Greilberger, J., Greilberger, M., & Herwig, R. Measurement of oxidative stress parameters, vitamin D and vitamin D binding protein during vitamin D treatment in a patient with amyotrophic lateral sclerosis. Integr Mol Med 2017; 4: 1-5. https://www.oatext.com/measurement-of-oxidative-stress-parameters-vitamin-d-and-vitamin-d-binding-protein-during-vitamin-d-treatment-in-a-patient-with-amyotrophic-lateral-sclerosis.php
  1. Morucci, G., Fiore, M. G., Magherini, S., Branca, J. J., Gulisano, M., Thyer, L., … & Pacini, S. (2013). Vitamin D binding protein-derived macrophage activating factor stimulates proliferation and signalling in a human neuronal cell line. In Italian Journal of Anatomy and Embriology (Vol. 118, pp. 143-143). FUP-Firenze University Press. https://arpi.unipi.it/handle/11568/1053207
  2. Bjorklund, G., Saad, K., Chirumbolo, S., Kern, J., Geier, D., Geier, M., & Urbina, M. (2016). Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta neurobiologiae experimentalis, 76(4), 257-268. https://ojs.nencki.edu.pl/index.php/ane/article/view/2076
  3. Theoharides, T. C., Tsilioni, I., Patel, A. B., & Doyle, R. (2016). Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Translational psychiatry, 6(6), e844-e844. https://www.nature.com/articles/tp201677
  4. Brigida, A. L., Schultz, S., Cascone, M., Antonucci, N., & Siniscalco, D. (2017). Endocannabinoid signal dysregulation in autism spectrum disorders: a correlation link between inflammatory state and neuro-immune alterations. International Journal of Molecular Sciences, 18(7), 1425. https://www.mdpi.com/1422-0067/18/7/1425
  5. Yamamoto, N., Naraparaju, V. R., Moore, M., & Brent, L. H. (1997). Deglycosylation of serum vitamin D3-binding protein by α-N-acetylgalactosaminidase detected in the plasma of patients with systemic lupus erythematosus. Clinical immunology and immunopathology, 82(3), 290-298. https://www.sciencedirect.com/science/article/abs/pii/S0090122996943202
  6. Yadav, B., Shashidhar, K. N., Reddy, H., & Deepika, R.(2021). Vitamin D Binding Protein: A Fidelity Molecule in Spectra of Diseases. Journal of Clinical & Diagnostic Research, 15(6). https://www.jcdr.net/articles/PDF/15053/47069_CE[Ra1]_F[SK] GC[AnK]_PF1(SC_RK)_PFA(NC_SC_KM)_PN(KM).pdf
  7. Rozmus, D., Ciesielska, A., Płomiński, J., Grzybowski, R., Fiedorowicz, E., Kordulewska, N., … & Cieślińska, A. (2020). Vitamin D binding protein (VDBP) and its gene polymorphisms—the risk of malignant tumors and other diseases. International Journal of Molecular Sciences, 21(21), 7822.https://www.mdpi.com/1422-0067/21/21/7822
  8. Del Pinto, R., Ferri, C., & Cominelli, F. (2017). Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives. International journal of molecular sciences, 18(11), 2360. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713329/
  9. Inui, T., Kubo, K., Kuchiike, D., Uto, Y., Nishikata, T., Sakamoto, N., & Mette, M. (2015). Oral Colostrum Macrophage-activating Factor for Serious Infection and Chronic Fatigue Syndrome: Three Case Reports. Anticancer research, 35(8), 4545–4549. https://ar.iiarjournals.org/content/35/8/4545.long
  10. Spadera, L., & Spadera, M. (2020). Potential role of GcMAF in suppressing the severity of COVID-19-induced immune responses: Lesson learned from HIV. Medical hypotheses, 144, 110293. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513798/
  11. Yamamoto N. (2006). Pathogenic significance of alpha-N-acetylgalactosaminidase activity found in the envelope glycoprotein gp160 of human immunodeficiency virus Type 1. AIDS research and human retroviruses, 22(3), 262–271. https://pubmed.ncbi.nlm.nih.gov/16545013/
  12. Yamamoto, N., Naraparaju, V. R., & Srinivasula, S. M. (1995). Structural modification of serum vitamin D3-binding protein and immunosuppression in AIDS patients. AIDS research and human retroviruses, 11(11), 1373–1378. https://pubmed.ncbi.nlm.nih.gov/8573395/
  13. Kearns, M. D., & Tangpricha, V. (2014). The role of vitamin D in tuberculosis. Journal of clinical & translational endocrinology, 1(4), 167–169. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684962/
  14. Pop, T. L., Sîrbe, C., Benţa, G., Mititelu, A., & Grama, A. (2022). The role of vitamin D and vitamin D binding protein in chronic liver Diseases. International journal of molecular sciences, 23(18), 10705. https://www.mdpi.com/1422-0067/23/18/10705
  15. Ruggiero, M., Pacini, S., Morucci, G., Branca, J. J. V., Ward, E., Smith, R., … & Gulisano, M. (2013). Multifaceted immunotherapeutic effects of vitamin D-binding protein-derived macrophage activating factor (GcMAF) on human breast cancer and neuroblastoma cells. FRONTIERS IN IMMUNOLOGY, 0-0. https://flore.unifi.it/handle/2158/820904
  16. Pacini, S., Morucci, G., Punzi, T., Gulisano, M., Ruggiero, M., Amato, M., & Aterini, S. (2012). Effect of paricalcitol and GcMAF on angiogenesis and human peripheral blood mononuclear cell proliferation and signaling. Journal of nephrology, 25(4), 577. https://pubmed.ncbi.nlm.nih.gov/21956771/
  17. Ruggiero, M., Branca, J. J., Noakes, D., Gulisano, M., Morucci, G., Thyer, L., & Pacini, S. (2008). Glycosylated oleic acid/vitamin D-binding protein suppresses HER2 oncogene expression in human breast cancer. Oncol, 10(1), 30-34. https://flore.unifi.it/retrieve/handle/2158/918539/29931/
  18. Ruggiero, M., Gulisano, M., Branca, J. J., Morucci, G., Noakes, D., & Pacini, S. (2014). Intra-tumoural nitric oxide release by macrophages activated by Gc-protein-derived Macrophage Activating Factor (GcMAF). Italian Journal of Anatomy and Embryology, 119(1), https://www.proquest.com/openview/17e0767c291aa3cf53b63a8ae97e7185/
  19. Swamy, N., Ghosh, S., Schneider, G. B., & Ray, R. (2001). Baculovirus‐expressed vitamin D‐binding protein‐macrophage activating factor (DBP‐maf) activates osteoclasts and binding of 25‐hydroxyvitamin D3 does not influence this activity. Journal of Cellular Biochemistry, 81(3), 535-546. https://pubmed.ncbi.nlm.nih.gov/11255236/
  20. Emma Ward, R., Branca, J. V., Noakes, D., Morucci, G., & Thyer, L. (2014). Clinical experience of cancer immunotherapy integrated with oleic acid complexed with de-glycosylated vitamin d binding protein. Am. J. Immunol, 10, 23-32. https://flore.unifi.it/handle/2158/1180639
  21. Inui, T., Makita, K., Miura, H., Matsuda, A., Kuchiike, D., Kubo, K., … & Sakamoto, N. (2014). Case report: a breast cancer patient treated with GcMAF, sonodynamic therapy and hormone therapy. Anticancer research, 34(8), 4589-4593. https://pubmed.ncbi.nlm.nih.gov/25075104/
  22. Pacini, S., Ruggiero, M., Morucci, G., & Punzi, T. (2011). Macrophages of the mucosa-associated lymphoid tissue (MALT) as key elements of the immune response to vitamin D binding protein-macrophage activating factor. 136-136. https://www.torrossa.com/it/resources/an/2490419
  23. Inui, T., Kuchiike, D., Kubo, K., Mette, M., Uto, Y., Hori, H., & Sakamoto, N. (2013). Clinical experience of integrative cancer immunotherapy with GcMAF. Anticancer Research, 33(7), 2917-2919. https://ar.iiarjournals.org/content/33/7/2917
  24. Inui, T., Amitani, H., Kubo, K., Kuchiike, D., Uto, Y., Nishikata, T., & Mette, M. (2016). Case report: a non-small cell lung cancer patient treated with GcMAF, sonodynamic therapy and tumor treating fields. Anticancer Research, 36(7), 3767-3770. https://ar.iiarjournals.org/content/36/7/3767.long
  25. Lynda, T., Branca, J. J. V., & Margit, T. (2014). Clinical experience of immunotherapy based on oleic acid bound to glycosylated vitamin d-binding protein in localised and metastatic adenocarcinoma of the pancreas. ANTICANCER RESEARCH, 34, 5847-5849. https://flore.unifi.it/handle/2158/918546
  26. Chaiyasit, K., Toshio, I., & Wiwanitkit, V. (2015). The use of Gc protein-derived macrophage activating factor for management of thyroid cancer. Journal of Cancer Research and Therapeutics, 11(4). https://www.proquest.com/openview/f93211f988372b44ace1ab50f4b3a0cd/
  27. Ma, W. T., Gao, F., Gu, K., & Chen, D. K. (2019). The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Frontiers in immunology, 10, 1140. https://www.frontiersin.org/articles/10.3389/fimmu.2019.01140/full
  28. Pradhan, P., Pandey, A. K., Mishra, A., Gupta, P., Tripathi, P. K., Menon, M. B., … & Kundu, B. (2020). Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag. BioRxiv. https://www.biorxiv.org/content/10.1101/2020.01.30.927871V1.full
  29. Yamamoto, N., Ushijima, N., & Koga, Y. (2009). Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF). Journal of medical virology, 81(1), 16–26. https://pubmed.ncbi.nlm.nih.gov/19031451/
  30. Yamamoto, N., Naraparaju, V. R., & Orchard, P. J. (1996). Defective lymphocyte glycosidases in the macrophage activation cascade of juvenile osteopetrosis. Blood, 88(4), 1473–1478. https://pubmed.ncbi.nlm.nih.gov/8695868/
  31. Wang, Y. L., Kong, H., Xie, W. P., & Wang, H. (2015). Association of vitamin D-binding protein variants with chronic obstructive pulmonary disease: a meta-analysis. Genetics and Molecular Research, 14(3), 10774-10785. https://www.geneticsmr.com/year2015/vol14-3/pdf/gmr6264.pdf
  32. Sayegh, L., Fuleihan, G. E. H., & Nassar, A. H. (2014). Vitamin D in endometriosis: a causative or confounding factor?. Metabolism, 63(1), 32-41. https://www.sciencedirect.com/science/article/abs/pii/S0026049513002965
  33. Adebanjo, O. A., Moonga, B. S., Haddad, J. G., Huang, C. L. H., & Zaidi, M. (1998). A possible new role for vitamin D-binding protein in osteoclast control: inhibition of extracellular Ca2+ sensing at low physiological concentrations. Biochemical and Biophysical Research Communications, 249(3), 668-671. https://www.sciencedirect.com/science/article/pii/S0006291X98990374
  34. Celikbilek, A. (2020). Possible associations of vitamin D, vitamin D-binding protein, and vitamin D receptor with diabetic neuropathic pain and balance. Journal of Pain Research, 465-466. https://www.tandfonline.com/doi/full/10.2147/JPR.S249871
  35. Speeckaert, M. M., Speeckaert, R., & Delanghe, J. R. (2021). Vitamin D and vitamin D binding protein: The inseparable duo in covid-19. Journal of Endocrinological Investigation, 44, 2323-2324. https://link.springer.com/article/10.1007/s40618-021-01573-w
  36. Yamamoto, N., Ueda, M., & Hashinaka, K. (2010). Immunotherapy of Chronic Lymphocytic Leukemia Patients with Gc Protein-derived Macrophage Activating Factor, GcMAF or its Cloned Derivative, GcMAFc. Clinical Immunology, (135), S13. https://www.sciencedirect.com/science/article/abs/pii/S1521661610001452
  37. Borumandnia, N., Majd, H. A., Doosti, H., & Olazadeh, K. (2022). The trend analysis of neurological disorders as major causes of death and disability according to human development, 1990-2019. Environmental Science and Pollution Research, 1-7. https://link.springer.com/article/10.1007/s11356-021-16604-5
  38. Bachiller, S., Jiménez-Ferrer, I., Paulus, A., Yang, Y., Swanberg, M., Deierborg, T., & Boza-Serrano, A. (2018). Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Frontiers in cellular neuroscience, 12, 488. https://www.frontiersin.org/articles/10.3389/fncel.2018.00488/full
  39. Thyer, L., Ward, E., Smith, R., Fiore, M. G., Magherini, S., Branca, J. J., Morucci, G., Gulisano, M., Ruggiero, M., & Pacini, S. (2013). A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages. Nutrients5(7), 2577–2589. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738989/
  40. Kirikovich, S. S., Levites, E. V., Proskurina, A. S., Ritter, G. S., Peltek, S. E., Vasilieva, A. R., Ruzanova, V. S., Dolgova, E. V., Oshihmina, S. G., Sysoev, A. V., Koleno, D. I., Danilenko, E. D., Taranov, O. S., Ostanin, A. A., Chernykh, E. R., Kolchanov, N. A., & Bogachev, S. S. (2023). The Molecular Aspects of Functional Activity of Macrophage-Activating Factor GcMAF. International journal of molecular sciences24(24), 17396. https://pubmed.ncbi.nlm.nih.gov/38139225/
  41. Dolgova, E. V., Kirikovich, S. S., Levites, E. V., Ruzanova, V. S., Proskurina, A. S., Ritter, G. S., Taranov, O. S., Varaksin, N. A., Ryabicheva, T. G., Leplina, O. Y., Ostanin, A. A., Chernykh, E. R., & Bogachev, S. S. (2022). Analysis of the Biological Properties of Blood Plasma Protein with GcMAF Functional Activity. International journal of molecular sciences23(15), 8075. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330714/
  42. Ruzanova, V. S., Kirikovich, S. S., Levites, E. V., Proskurina, A. S., Dolgova, E. V., Ritter, G. S., Efremov, Y. R., Dubatolova, T. D., Sysoev, A. V., Koleno, D. I., Ostanin, A. A., Chernykh, E. R., & Bogachev, S. S. (2024). The Macrophage Activator GcMAF-RF Enhances the Antitumor Effect of Karanahan Technology through Induction of M2-M1 Macrophage Reprogramming. Journal of immunology research2024, 7484490. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919980/
  43. Harrison, S. R., Li, D., Jeffery, L. E., Raza, K., & Hewison, M. (2020). Vitamin D, Autoimmune Disease and Rheumatoid Arthritis. Calcified tissue international106(1), 58–75. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960236/